National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Mesenchymal stromal cells and biological scaffolds for neural tissue regeneration
Kočí, Zuzana ; Kubinová, Šárka (advisor) ; Filová, Eva (referee) ; Zach, Petr (referee)
Despite tremendous progress in medicine, injuries of the adult central neural system remain without satisfactory solution. Regenerative medicine employs tissue engineering, cellular therapies, medical devices, gene therapy, or growth factors with the aim to bridge the lesion, re-establish lost connections and enhance endogenous repair in order to restore neural function. The aim of my thesis was to evaluate therapeutic potential of two approaches, transplantation of human mesenchymal stromal cells (hMSCs) and biological scaffolds derived from extracellular matrix (ECM) for neural regeneration, particularly in models of spinal cord injury (SCI). First, hMSCs from various sources - bone marrow (BM), adipose tissue (AT) and Wharton's jelly (WJ) - were isolated and characterized in vitro. All cell types met the minimal criteria for MSC phenotype and displayed similar properties in terms of their surface marker expression, differentiation potential, migratory capacity, and secretion of cytokines and growth factors. On the other hand, the cell yield from WJ and AT was significantly higher, and MSCs isolated from these tissues proliferated better than from BM. Therapeutic effect of intrathecal application of hWJ-MSCs was then evaluated in SCI compression model in rats. The effect of low (0.5 million) and...
Impact of mesenchymal stem cells on islets revascularization after transplantation into the extracellular matrix
Hudzieczková, Aneta ; Girman, Peter (advisor) ; Černý, Jan (referee)
Pancreatic transplantation is the only possible treatment to induce independence from exogenous insulin administration in type 1 diabetes mellitus. However, the shortage of donor organs remains the main limitation of pancreas transplantations. The goal of the research is the preparation of a bioartificial organ based on cell therapy. Parts of the extracellular matrix obtained by decellularization of the pancreas are used for its preparation. The protein scaffolds prepared in this way are then repopulated by different cell types again. The extracellular matrix provides structural support to cells, mediates signaling for differentiation, proliferation or migration. Mesenchymal stromal cells are used in clinical therapy, have a positive effect on tissue regeneration processes, modulating the function of the extracellular matrix, suppress inflammation and promote angiogenesis. After pancreas decellularization, we repopulated the extracellular matrix with islets, mesenchymal cells and endothelial cells. Then, the pancreas was transplanted subcutaneously into syngeneic diabetic rats to observe islet revascularization. Based on sections of explanted scaffolds, we found out that revascularization of the islets was higher without the endothelial cells in the transplanted extracellular matrix. Key words:...
Mesenchymal stromal cells and biological scaffolds for neural tissue regeneration
Kočí, Zuzana ; Kubinová, Šárka (advisor) ; Filová, Eva (referee) ; Zach, Petr (referee)
Despite tremendous progress in medicine, injuries of the adult central neural system remain without satisfactory solution. Regenerative medicine employs tissue engineering, cellular therapies, medical devices, gene therapy, or growth factors with the aim to bridge the lesion, re-establish lost connections and enhance endogenous repair in order to restore neural function. The aim of my thesis was to evaluate therapeutic potential of two approaches, transplantation of human mesenchymal stromal cells (hMSCs) and biological scaffolds derived from extracellular matrix (ECM) for neural regeneration, particularly in models of spinal cord injury (SCI). First, hMSCs from various sources - bone marrow (BM), adipose tissue (AT) and Wharton's jelly (WJ) - were isolated and characterized in vitro. All cell types met the minimal criteria for MSC phenotype and displayed similar properties in terms of their surface marker expression, differentiation potential, migratory capacity, and secretion of cytokines and growth factors. On the other hand, the cell yield from WJ and AT was significantly higher, and MSCs isolated from these tissues proliferated better than from BM. Therapeutic effect of intrathecal application of hWJ-MSCs was then evaluated in SCI compression model in rats. The effect of low (0.5 million) and...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.